Giải bài toán cho Diệp
ĐK: $x\neq \displaystyle\frac{\pi}{4}+\displaystyle\frac{k\pi}{2}, x\neq \displaystyle\frac{\pi}{6}+\displaystyle\frac{k\pi}{3}$
Phương trình tương đương: $$3sin2xcos^23x-4sin3xcos2xcos3x=sin^23xsin2x$$ $$\Leftrightarrow 2cos3x(sin2xcos3x-sin3xcos2x)+sin2x(cos^23x-sin^23x)=2sin3xcos3xcos2x$$ $$\Leftrightarrow 2cos3xsin(-x)+sin2xcos6x=sin6xcos2x$$ $$\Leftrightarrow sin2x-sin4x+sin(-4x)=0$$ $$\Leftrightarrow sin2x(1-4cos2x)=0$$
1) $sin2x=0\Leftrightarrow x=k\pi$
2) $cos2x=\displaystyle\frac{1}{4}\Leftrightarrow x=\pm \displaystyle\frac{1}{2}arccos\displaystyle\frac{1}{4}+k\pi$
Phương trình tương đương: $$3sin2xcos^23x-4sin3xcos2xcos3x=sin^23xsin2x$$ $$\Leftrightarrow 2cos3x(sin2xcos3x-sin3xcos2x)+sin2x(cos^23x-sin^23x)=2sin3xcos3xcos2x$$ $$\Leftrightarrow 2cos3xsin(-x)+sin2xcos6x=sin6xcos2x$$ $$\Leftrightarrow sin2x-sin4x+sin(-4x)=0$$ $$\Leftrightarrow sin2x(1-4cos2x)=0$$
1) $sin2x=0\Leftrightarrow x=k\pi$
2) $cos2x=\displaystyle\frac{1}{4}\Leftrightarrow x=\pm \displaystyle\frac{1}{2}arccos\displaystyle\frac{1}{4}+k\pi$
Nhận xét
Đăng nhận xét